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Summary

1.

 

We incorporated spatial data on swift foxes (

 

Vulpes velox

 

) with genetic analysis
to assess the influence of  relatedness between individuals on their social and spatial
ecology. We recorded the space use patterns of 188 radio-collared swift foxes in south-
eastern Colorado from January 1997 to December 2000. One hundred and sixty-seven
foxes were also genotyped at 11 microsatellite DNA loci and the degree of relatedness
between individuals was estimated.

 

2.

 

We described the genetic structure of the population by examining the relatedness of
neighbours and the relationship between the spatial and genetic distance of all individuals.
We found that close kin appeared to cluster within the population. Neighbours were
significantly more related (mean 

 

R

 

 = 0·089 

 

±

 

 0·01) than non-neighbours (mean 

 

R

 

 =
0·003 

 

±

 

 0·01; randomization test, 

 

P

 

 < 0·0002). Female clusters were more extensive than
male clusters.

 

3.

 

The degree of  genetic relatedness among foxes was useful in explaining why foxes
tolerated encroachment of their home ranges by neighbours; the more closely related
neighbours were, the more home-range overlap they tolerated (Mantel test, 

 

P

 

 = 0·0004).
Foxes did not appear to orientate their home ranges to avoid neighbours and home ranges
overlapped by as much as 54·77% (

 

x

 

 = 14·13% 

 

±

 

 0·41). Neighbours also occasion-
ally engaged in concurrent den sharing.

 

4.

 

Relatedness influenced the likelihood that an individual would inherit a newly vacated
home range, with a mean relatedness of range inheritors to previous owners of 0·333 

 

±

 

0·074. Thus, the genetic structure of the population and interactions between kin were
interrelated to space-use patterns and social ecology of the swift fox.
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Introduction

 

Mammals interact with their neighbours and other
conspecifics in a variety of ways, ranging from the use
of non-exclusive home ranges to defence of exclusive
territories (Geffen 

 

et al

 

. 1999). Home-range defence
occurs for a number of reasons, including monopol-
ization of mates and defence of other resources such as
food and dens (Davies 1978; Messier & Barrette 1982;
Gese 2001). Territorial behaviour is costly, however.
Time and energy are spent patrolling the territory, and
if  encounters with neighbours are aggressive, injury or

even death can ensue. Territoriality should occur only
when the benefits outweigh the costs (Davies & Houston
1984). The benefits of territoriality will be reduced in
cases where resources are abundant and evenly distributed
or intraspecific competition for resources is low.

Inclusive fitness may mediate intraspecific competition
for resources when relatives are aggregated spatially and
likely to interact cooperatively (Hamilton 1964). If  kin
are less aggressive towards each other than toward non-
kin (Waldman 1988), and if  inclusive fitness is increased
as a result, cooperative behaviours among kin will evolve
(e.g. Garza 

 

et al

 

. 1997; Hoglund 

 

et al

 

. 1999). Kinship has
been used to explain affiliative and cooperative behaviour
within and between social groups in a variety of birds
and mammals (e.g. Packer 

 

et al

 

. 1991; Hatchwell 

 

et al

 

.
2001; Walls & Kenward 2001; Wimmer, Tautz &
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Kappeler 2002). Furthermore, variation in relatedness
is hypothesized to correlate with variation in behavioural
interactions (Gompper & Wayne 1996). For example,
the benefits of cooperating with kin may also influence
where individuals settle, thereby affecting population
genetic structure. It has been suggested that the kit fox
(

 

Vulpes macrotis

 

 Merriam), a closely related species to
the swift fox (

 

Vulpes velox

 

 Say), has an ‘expanded social
structure’ in which foxes often interact with foxes from
neighbouring social groups (O’Neal, Flinders & Clary
1987). This spatial structure may have been influenced
by kin effects as kit fox neighbours are often related
(Ralls 

 

et al

 

. 2001).
Here we describe the spatial and genetic structure of

the swift fox. The swift fox is one of the smaller North
American fox species, inhabits short and mid-grass
prairies of North America, and ranged historically from
Canada to northern Texas (Scott-Brown, Herrero &
Reynolds 1987). They are highly fossorial, using dens
year-round (Egoscue 1979). Little is known of the breed-
ing system or intraspecific interactions of this fox, and
the genetic structure of swift fox populations has not
been investigated previously. We hypothesized that if
swift foxes gain benefits by interacting amicably with
kin, this cooperative behaviour would be evident in
the degree of overlap between home ranges and in its
concurrent use. The more closely related neighbouring
swift foxes are, the more their home ranges will overlap
and the more individual foxes should tolerate use of
overlapping areas. We hypothesized further that if  this
pattern of cooperation exists, it will be apparent in the
genetic structure of the population. Because kin receive
benefits from being neighbours, dispersing individuals
should settle preferentially near relatives creating kin
clusters. Thus, an increased tolerance among neigh-
bouring kin will influence both the spatial ecology and
genetic structure of swift fox populations.

 

Methods

 

 

 

The study area (Pinon Canyon Maneuver Site, PCMS)
is located in Las Animas County, north-east of Trinidad,
Colorado. The foxes sampled inhabited an area of 736
km

 

2

 

. The climate is semi-arid, with a mean annual pre-
cipitation ranging between 26 and 38 cm. Mean monthly
temperatures range from 

 

−

 

1 

 

°

 

C in January to 23 

 

°

 

C in
July. Elevations range from 1310 to 1740 m. The two
main vegetation types are shortgrass prairie and pinyon
pine (

 

Pinus edulis

 

)–juniper (

 

Juniperus monosperma

 

)
communities (Shaw 

 

et al

 

. 1989). The study area was used
primarily for cattle ranching prior to 1982, at which
time the US Army acquired the PCMS.

 

 

 

Genetic relatedness between individual swift foxes within
the population on the PCMS was assessed using 11

microsatellite loci. Blood samples were obtained from
foxes caught in box traps and were frozen or stored in
lysis buffer (Longmire 

 

et al

 

. 1991) at a 1 : 5 ratio of blood
to buffer. Tissue samples were taken from radio-collared
animals found dead and frozen until analysis. Fresh
scat samples were collected during trapping allowing
for positive correlation between the scat and the fox
and then frozen.

DNA was extracted from blood and tissue samples
using a blood or tissue Qiagen protocol (Qiagen Inc.,
Valencia, CA, USA), or a phenol/chloroform protocol
(Vardenplas 

 

et al

 

. 1984). DNA was extracted from scat
samples in a room dedicated to processing low-quantity
samples using standard protocols of a Qiagen stool kit,
using multiple negative controls to test for contamina-
tion. Samples were amplified through a polymerase chain
reaction (PCR) with microsatellite primers (Saiki, Scharf
& Faloona 1985). PCR products were first run on a
1·5% agarose gel to test the quality of DNA extractions,
and if  necessary (i.e. no band of the appropriate size
appearing on the gel) a second extraction of  the
alternate type was performed. When PCR amplification
was faint or absent after the second extraction, DNA
extracts were concentrated and purified to remove
inhibitors using standard Geneclean protocols
(Qbiogene, Inc., Carlsbad, CA, USA).

Microsatellite primers developed for the dog genome
and used for the closely related kit fox (Östrander, Sprague
& Rine 1993; Fredholm & Wintero 1995; Francisco

 

et al

 

. 1996; Ralls 

 

et al

 

. 2001) were optimized for the
swift fox samples (Table 1). The following primers were
used successfully: CXX20, CXX30, CXX173, CXX263,
CXX403, CXX250, CXX109, CXX2062, CXX377,
FH2054 and CPH3. Other primers that were tested but
not used were CXX123, CXX225, CXX2001 (rejected
due to unsatisfactory amplification) and CXX172,
CXX200 and FH2140 (rejected due to an insufficient
number of alleles). For blood and tissue samples, the 20

 

µ

 

L PCR reactions were cycled 35 times, with denatura-
tion at 94 

 

°

 

C for 30 s, annealing at 51 or 55 

 

°

 

C, depending
on the primer pair (Table 1), for 30 s, and extension at
72 

 

°

 

C for 30 s. Each primer was labelled with a fluoro-
chrome (FAM, HEX or TET). Multiplexes of primers
were developed to allow multiple loci to be run simul-
taneously. CXX20/CPH3, CXX109/CXX30, CXX403/
CXX173 and CXX2062/CXX250, were run as multi-
plexes and CXX263, CXX377 and FH2054 were run
as singleplexes. The concentrations of  reagents that
did not vary between reactions were dNTPs (0·25 m

 



 

),
bovine serum albumin (BSA) (1·01 mg/mL), regular

 

Taq

 

 buffer (1

 

×

 

), and regular 

 

Taq

 

 (0·5 U). Reagents
that varied were the primer concentrations and MgCl

 

2

 

(Table 1). For scat samples, the PCR reactions were cycled
55 times, and 0·2 U of Gold 

 

Taq

 

 DNA polymerase
replaced regular 

 

Taq

 

. Microsatellite genotypes were
obtained using an Applied Biosystems 377 sequencer
(Applied Biosystems) with a 

 



 

 500-Tamra size
standard. The genotypes of the individual foxes were
obtained using the software programs 

 



 


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version 3·1 and 

 



 



 

 version 2·1 (Applied
Biosystems). The blood and tissue samples from 20
individuals were re-amplified and the observed error
rate per single locus genotype was estimated by calcu-
lating the number of errors/number of PCRs. Due to
low quality and concentrations of DNA, scat samples
were analysed repeatedly and the confidence of  the
genotypes was estimated using the software package

 



 

 (Miller, Joyce & Waits 2002). 

 



 

 is a
program for assessing the reliability of an observed
multilocus genotype and for directing further replica-
tion if  it is not sufficiently reliable. Genotypes were
replicated until a confidence level of obtaining a correct
multilocus genotype of 99% was obtained (an average
of 4·11 PCRs per locus were used for scat samples). For
some samples, unreliable loci were dropped from the
analysis. Samples were removed from the analysis unless
they were assessed at 

 

≥

 

 9 loci. Due to possible effects on
relatedness values, deviations from Hardy–Weinberg
equilibrium and linkage disequilibrium were tested using
the program 

 



 

 (Raymond & Rousset 1995) and
corrected for multiple tests using Bonferroni adjustment.

Relatedness between individuals was assessed using
the program 

 



 

TM

 

 1·1·2 (Goodnight & Queller 1999).

 



 

TM

 

 estimates Grafen’s relatedness coefficient
(Grafen 1985) between all possible pairs of individuals.
This coefficient measures the degree to which two
individuals share identical alleles, taking into account
the allele frequencies in the population and each
individual’s genotype (Goodnight & Queller 1999). Loci
exhibiting lower than expected heterozygosity levels
contribute less to the calculation of 

 

R

 

 than loci with
higher levels of heterozygosity. 

 

R

 

-values range between

 

−

 

1 and 1. A positive 

 

R

 

-value between two individuals
indicates that they are more related (i.e. they share more
alleles that are identical by descent) than expected by
chance, and a negative 

 

R

 

-value indicates that they are
less related than expected by chance. These calcula-
tions are based on a reference set which was made up of
all sampled foxes. It is important to note that these do
not constitute an isolated population, however.

 

 

 

The interaction of swift fox neighbours was documented
using radiotelemetry. Foxes were captured using double-
door box traps (80 

 

×

 

 25 

 

×

 

 25 cm) baited with chicken
(Covell 1992). Traps were deployed in the evening
and checked the following morning. Trapping ceased
during periods when night-time temperatures dropped
below 

 

−

 

10 

 

°

 

C. A radio-collar and ear tag was attached
to the fox and the weight, sex and age of  the animal
was recorded. To recapture certain individuals in order
to change their radio-collar, a trap-enclosure system
as described by Covell (1992) was used. All foxes were
released at the site of capture. The foxes were caught in
five areas on the study site. The boundaries of the five
areas were > 1·5 home-range diameters apart, and
although some foxes dispersed between areas, no fox
inhabited more than one area at a time (Schauster,
Gese & Kitchen 2002).

Telemetry procedures followed recommendations
by White & Garrott (1990). Radio-tagged foxes were
monitored to determine home-range estimates, overlap
and range inheritance. Relocations on the foxes were
attempted approximately every 1–3 days with locations
obtained throughout the 24-h period to reduce bias
in home-range estimates. Home-range estimates were
obtained by a 95% fixed-kernel range estimator (Worton
1989) with least-squares cross-validation smoothing.
A social group was defined as foxes that shared a range
and concurrently shared dens (Kitchen, Gese & Schauster
1999). Foxes were considered neighbours if  they were
residents in adjacent ranges with a common boundary
or some overlap, as determined by the 95% fixed-kernel
home-range estimator.

We compared the relatedness between neighbours
to that between non-neighbours. We evaluated the level
of overlap between neighbours of different sex combina-
tions (e.g. male–male, female–male and female–female),
and whether the relatedness of neighbours correlated
with the level of  overlap between their ranges. Mean
overlap was calculated using an index that varies

Table 1. Optimization information, polymorphism information, observed and expected heterozygosities, and reagent
concentrations for the microsatellite loci

Locus n 
Annealing 
temp (°C)

No. of 
alleles Size range HO HE

Primer 
(uM)

MgCl2 
(mM)

CPH3 167 55 6 151–161 0·647 0·683 0·1 0·25
CXX403 167 55 4 273–281 0·305 0·305 0·2 0·25
CXX263 166 51 4 114–122 0·482 0·611 0·2 0·19
CXX250 166 51 7 132–140 0·440 0·631 0·3 0·38
FH2054 166 51 6 175–187 0·627 0·650 0·2 0·25
CXX20 167 55 9 129–145 0·707 0·719 0·3 0·25
CXX173 167 55 3 124–128 0·317 0·298 0·2 0·25
CXX109 167 55 3 168–172 0·443 0·661 0·3 0·25
CXX30 122 55 11 141–157 0·787 0·828 0·1 0·25
CXX2062 166 55 6 137–154 0·651 0·683 0·1 0·38
CXX377 164 55 8 173–191 0·561 0·642 0·2 0·25

x 162 6·09 0·542 0·610
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between 0 and 100, with 100 indicating complete overlap
(Minta 1992).

We assessed whether observed overlap among neigh-
bouring foxes was different from an estimate of overlap
expected by chance derived by rotating the ranges
randomly about their centroids (Geffen & Macdonald
1992). We compared the actual overlap with the aver-
age overlap calculated from randomly rotating one
of the ranges three times. If  the overlap observed was
greater than that expected, individual foxes were
considered to be attracted to one another, whereas if
the observed overlap was less than expected foxes were
assumed to be avoiding one another (Madison 1980).
The actual overlap was used instead of the Minta index
(Minta 1992) for overlap, as the size of the neighbour-
ing home range was inconsequential to the orientation
of a fox’s home range.

To evaluate whether foxes temporally avoided their
neighbours, we assessed how much neighbouring foxes
were using the overlapping areas of their ranges con-
currently. To do this, we calculated the simultaneous
use of the overlapping area of their range by calculating
the percentage of the total points (simultaneous and
non-simultaneous) in the overlapping area when
both animals were found there within 1 h of each other
(deemed simultaneous). This was compared to the
percentage of the total points in the non-overlapping
area when both animals were located within 1 h using a
mixed factor analysis of variance model. The sex com-
bination of the neighbours (female and female, male
and female, male and male) was incorporated into the
model. Five randomly chosen overlapping neighbours
per season per year were used for these analyses. We
assessed whether the level of  temporal avoidance
displayed by neighbours (i.e. the difference between
the simultaneous use of  overlapping areas vs. non-
overlapping areas) was correlated to their relatedness
using a Pearson product–moment correlation. We also
assessed the frequency of occurrence of den-sharing
between neighbours and the relatedness between neigh-
bouring animals that engaged in concurrent den-sharing.

We evaluated the relatedness between swift foxes
that inherited empty ranges and the previous owner and
compared this to the average population relatedness
(the mean relatedness of all dyads of sampled foxes).
We assessed this in cases where an apparently single
range-holder died, or a mated pair died within a short
period. In the latter case, the relatedness of the last pair-
member to die was used. If  a mated pair began to utilize
an empty range at the same time, the more closely related
of the members to the former range-holder was used.
This method was chosen as swift fox pairs are generally
unrelated (Kitchen 2004); thus, only one individual
would be related to the previous home-range owner. We
believe this method to be valid and did not introduce

bias into the analysis; the average 

 

R

 

-value of single
inheritors (mean 

 

R

 

 = 0·381 

 

±

 

 0·093, 

 

n

 

 = 7) was higher
than the more closely related of the members of a mated
pair (mean 

 

R

 

 = 0·217 

 

±

 

 0·108, 

 

n

 

 = 3).
If  kin settled near each other, we hypothesized that

distance between home-range centroids would be
correlated with genetic relatedness. That is, the more
closely related foxes were to one another, the closer
their home ranges would be. Distance was grouped into
< 3 km (approximately distance between neighbour cen-
troids), 3–6 km (approximate distance between neigh-
bours twice removed) and more than 6 km. Because of
the issue of pseudoreplication in the multiple pairwise
comparisons of  fox relatedness, we used Mantel’s
randomization tests (Mantel 1967) and analysis of
variance and two-sample tests by randomization per-
formed in the software program 

 



 

 version 2·1 (Manly
1997) instead of conventional statistical tests. These
randomization tests were carried out with 5000 permu-
tations to assess: (1) the relatedness of male individuals
to other males vs. female individuals to other females
within the population; (2) the relatedness of neigh-
bours vs. non-neighbours; (3) the relationship between
geographical distance and relatedness of individuals;
and (4) whether there was a relationship between home-
range overlap and relatedness. Probability values in
multiple comparisons were adjusted using a Bonfer-
roni adjustment.

For the purposes of analyses, we defined seasons on
the basis of energetic demands (due to climatic changes
and prey abundance) and behavioural characteristics
(including breeding, gestation, pup-rearing and disper-
sal) which were applicable to swift foxes as follows: pup-
rearing season (15 April

 

−

 

14 August), dispersal season
(15 August

 

−

 

14 December) and breeding/gestation
season (15 December

 

−

 

14 April). Spatial analyses were
performed using 

 



 

 version 3·0 (Environmental
Systems Research Institute, Inc., Redlands, CA, USA).
Statistical analyses were performed using 

 



 

 (2001).
Data were examined for normality and homoscedasticity
in all parametric tests. Data were log-transformed for
assessment of spatial avoidance owing to deviations
from normality.

 

Results

 

We obtained 32 556 locations on 188 swift foxes,
with continuous data collection from January 1997 to
December 2000. We analysed genetic samples on 167
foxes. The mean proportion of individuals genotyped
at each locus was 0·972, and 164 individuals were
genotyped at 

 

≥

 

 10 loci. The error rate of genotyping was
estimated at 0·9%. Forty-four of 52 scat samples met
the data reliability criteria discussed in the Methods;
the remaining samples were omitted from analysis.
Observed heterozygosities per locus varied from 0·305
to 0·787 with an average of 0·542 (Table 1). Significant
deviations from Hardy–Weinberg equilibrium were
observed at five of the 11 loci when testing the population

Mean overlap  
HRoverlap * 100

HR(A) * HR(B)
=
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as a whole after Bonferroni adjustment for multiple tests.
When the Hardy–Weinberg equilibrium was tested within
each of the five sampling areas individually, there was
an average of 1·6 loci per area that deviated significantly
(Table 2). A number of factors may influence Hardy–
Weinberg equilibrium within a population, such as non-
random mating. However, because relatives appear
to be clustered within our population (see below), the
deviations from Hardy–Weinberg equilibrium seen
in our population may be due to the Wahlund effect
(Wahlund 1928). The Wahlund effect occurs when popu-
lations with different allelic frequencies are combined
in a single sample. The kin clusters were essentially sub-
populations within the population. This is supported
further by the fact that deviations were reduced when
we tested each area separately, and that we had a low
error rate reducing the possibility that deviations were
due to null alleles. This effect has also been seen in kit
fox populations, where similar kin clustering occurs
(Ralls 

 

et al

 

. 2001). Loci pairs that were in linkage dis-
equilibrium at the 0·05 level in the population overall
after adjustment for multiple tests using a Bonferroni
adjustment were CXX30 and CXX377, CXX2062,
CXX173; FH2054 and CXX20, CXX250; and CXX2062
and CXX377. We tested for linkage disequilibrium within
each area, and found that there was an average of 1·8
loci pairs in disequilibrium per area (compared to the
six pairs that were in disequilibrium in the population
overall). Of the six loci out of equilibrium for the entire
data set only one pair (CXX30 and CXX2062) was out
in more than one area and this pair was out of equilibrium
only in areas 1 and 4. Areas 2 and 5 show no dis-
equilibrium. Thus we feel that the observed linkage
disequilibrium in our data set is due to population
substructure and sporadic effects rather than physical
linkage of these loci in the genome.

Females and males had similar relatedness within the
population (mean 

 

R

 

 = 0·009 

 

±

 

 0·004 vs. 0·008 

 

±

 

 0·004;
randomization test, no. of  dyads = 999, 

 

P

 

 = 0·362).
Neighbours were significantly more related (mean 

 

R

 

 =
0·089 

 

±

 

 0·01) than non-neighbours (mean 

 

R

 

 = 0·003 

 

±

 

0·01; randomization test, no. of dyads = 990, 

 

P

 

 < 0·0002).
There was significantly more home-range overlap with
increasing levels of relatedness (Mantel test, no. of dyads
= 999, 

 

P

 

 = 0·0004, Fig. 1).
Overall, the mean overlap between neighbouring

home ranges was 14·13% ± 0·41. The distribution of
overlaps was negatively skewed, however; neighbours
overlapped each other’s ranges by as much as 54·77%.
Male–male neighbours exhibited a slightly smaller overlap
(x = 13·64% ± 0·789) than female–female neighbours
(x = 14·239% ± 0·803) or female–male neighbours (x =
14·308% ± 0·589). This overlap was not significantly dif-
ferent (randomization test, no. of dyads = 999, P = 0·95).

When assessing spatial avoidance, we found that the
actual overlap (x = 1·20 km2 ± 0·14) was not signifi-
cantly smaller than the overlap seen from the rotated
ranges (x = 1·28 km2 ± 0·13; F2,93 = 0·02, P = 0·89);
thus, the foxes did not appear to be orientating their
ranges in such a way as to reduce overlap with their
neighbours.

There was significantly less simultaneous use of
the overlapping area (x = 3·49% ± 0·89) than there was
of the non-overlapping areas of neighbouring home
ranges (x = 21·52% ± 1·40; F1,98 = 102·96, P < 0·0001).
There was no difference in temporal avoidance for
the different sex combinations (F2,98 = 0·43, P = 0·653)
or the different seasons (F2,98 = 0·99, P = 0·374). In

Table 2. Exact test P-values for Hardy–Weinberg (HW) equilibrium for the whole population and each area individually adjusted
for multiple comparisons using Bonferroni adjustment. Values marked * indicate significant deviation from HW equilibrium at
the level of 0·05

Locus
Whole 
population Area 1 Area 2 Area 3 Area 4 Area 5

CPH3 0·024* 1·000 1·000 1·000 1·000 1·000
CXX403 1·000 1·000 1·000 1·000 0·822 1·000
CXX263 0·000* 0·166 0·333 1·000 1·000 1·000
CXX250 0·000* 0·004* 0·006* 0·670 1·000 0·022*
FH2054 0·782 1·000 1·000 1·000 1·000 1·000
CXX20 1·000 0·854 1·000 1·000 1·000 1·000
CXX173 1·000 1·000 1·000 1·000 1·000 1·000
CXX109 0·000* 0·414 1·000 1·000 1·000 0·054
CXX30 0·074 0·315 1·000 1·000 1·000 1·000
CXX2062 1·000 1·000 1·000 1·000 1·000 1·000
CXX377 0·041* 0·554 1·000 0·482 1·000 1·000

Fig. 1. Average Minta index for overlap (± SE) between
neighbouring home ranges for four classes of relatedness
between swift foxes in south-eastern Colorado, 1997–2000.
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addition, there was a significant positive correlation
(r58 = 0·31, P = 0·028) between the relatedness of neigh-
bours and the level of simultaneous use of the portion
of  their home ranges that overlapped relative to the
simultaneous use of non-overlapping areas.

Concurrent den-sharing of non-social group foxes
occurred nine times, eight times between neighbours
and once between a resident and a transient. In seven of
the nine cases, the sharing occurred between members
of the same sex. Four cases occurred in the breeding
season and five in the dispersal season. Concurrent
den-sharers from neighbouring ranges were generally
not closely related (mean R = 0·105 ± 0·177).

We found that the 10 range inheritors were. on averag.
highly related to the foxes from which they inherited
the range (x = 0·333 ± 0·074). This was significantly
higher than the average relatedness of all dyads in the
sample (x = 0·009 ± 0·003; t = 4·37, d.f. = 9, P = 0·0018).
There appeared to be no sex bias in inheritance, with two
males and three females inheriting ranges from males,
and two males and three females inheriting ranges from
females. There were three range inheritors that were
collared prior to the death of the range owner. All three
range inheritors came from their natal dens; two from
neighbouring ranges and one from two home ranges away.

The geographical distance between foxes’ home-range
centroids was correlated to relatedness, with higher
levels of  relatedness among foxes with geographical
proximity for all sex combinations (Table 3, Fig. 2).
Females exhibited a more extensive kin clustered
pattern with higher relatedness extending for larger dis-
tances than that seen between males (Table 3, Fig. 2).

Discussion

Our data suggest that swift fox populations are geneti-
cally structured at a fine-scale with kin clustering evident.
Neighbours were related more closely than expected
from the average population relatedness. In addition,
foxes were increasingly related as the spatial proximity
of their home ranges increased (Table 3, Fig. 2). We
propose that the clustering among kin in the swift
fox population has led to an increased level of tolerance
among neighbours. We found a positive correlation
between tolerance levels and the degree of kinship.
Overlap of  neighbours increased with increasing
relatedness (Fig. 1), as did the use of overlapping areas.

While the influence of  relatedness on tolerance has
not always been clear in field studies (e.g. Spong &
Creel 2004), a positive correlation between cooperative
behaviour and relatedness has been noted in carnivores,
primates and birds (e.g. Morin et al. 1994; Hatchwell
et al. 2001; Widdig et al. 2001; Creel & Creel 2002).
Girman et al. (1997) found that African wild dog (Lycaon
pictus) neighbours show higher relatedness than expected
by chance, and hypothesized that dispersal to neigh-
bouring packs may reduce the frequency and intensity
of interpack encounters.

The tolerance between neighbours and its positive
correlation with relatedness in swift foxes demonstrate
that kin facilitation (Hamilton 1964) may play an import-
ant role in the social ecology and space-use patterns of
the swift fox. The spatial organization of kin clusters
probably facilitated the foxes by reducing the costs
inherent in home-range defence, and also benefited foxes
in that empty ranges were often inherited by related foxes.
Inheritance of ranges by relatives has been seen in birds
(e.g. Emlen 1991; Cockburn 1998) and other canids
(Moehlman 1989; Schmidt & Mech 1997). Tolerance
extended to den-sharing between neighbours. How-
ever, the exhibition of den-sharing in swift foxes with
unrelated individuals was unexpected but may be due
to the presence of a predator as dens appear to be
important in predator avoidance for the swift fox.

The difference between swift foxes and other canids
that do not exhibit both spatial–genetic structuring
and tolerance of neighbours due to relatedness may be
due to either intrinsic behavioural factors or extrinsic

Table 3. Randomization test significance values and number of dyads assessed (restricted to 999) when comparing the average
relatedness relative to the distance between their home-range centroids for female–female (FF), male–male (MM) and female–
male (FM) sex combinations of swift foxes in south-eastern Colorado, 1997–2000. Values are adjusted for multiple comparisons
using a Bonferroni adjustment

Distance (km)

FF MM FM

P No. of dyads P No. of dyads P No. of dyads

< 3 vs. 3–6  0·107 402  0·017 278  0·039 962
3–6 vs. 6 +  0·001 999  0·375 999  0·002 999
Overall < 0·001 999 < 0·001 999 < 0·001 999

Fig. 2. Average relatedness for three classes of distance
between home-range centroids for female–female (FF), male–
male (MM) and female–male (FM) sex combinations of swift
foxes in south-eastern Colorado, 1997–2000.
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human-caused influences. Tolerance of neighbours will
be viable only when breeding opportunities are not
limited. Many canids that have been studied genetically
live in packs (e.g. coyotes, Canis latrans, Lehman &
Wayne 1991; Williams et al. 2003) or confined areas
(e.g. island foxes, Urocyon littoralis, Roemer et al. 2001);
thus, the stronger competition for mating opportunities
may have led to decreased tolerance of kin. Kin com-
petition would lead to higher dispersal rates and less
spatial–genetic structuring such as that seen in coyotes
(e.g. Lehman & Wayne 1991) or, where dispersal is not
possible, to decreased tolerance of neighbours such as
that seen in the island fox (Roemer et al. 2001). Alter-
natively, the lack of spatial–genetic structuring in many
canid populations may be due to the high turnover of
individuals resulting from high mortality due to factors
such as human exploitation (e.g. Williams et al. 2003).

The kin-clustering evident in swift foxes indicates
that settlement decisions may be influenced by the
relatedness of neighbours, and indeed short-range dis-
persal was seen in the swift fox population (Schauster
et al. 2002). Dispersal is influenced by kinship in
African wild dogs (Girman et al. 1997), with dispersal
events often coinciding with a change in dominance
hierarchy and dispersers often moving to areas close
to relatives. Long-range dispersal events were also docu-
mented (Schauster et al. 2002) and may be an important
mechanism of inbreeding avoidance (Gandon 1999).
However, the reduced risk and benefits of kin facilita-
tion when living in clusters of relatives seems to have
selected against obligatory long-range dispersal in the
swift fox. Alternatively, the kin clustering may have been
a result of the dispersal patterns displayed by swift foxes.

There was a difference between sexes in the structure
of relatedness within the population with female kin
clusters more extensive than male kin clusters. Many
species exhibit a sex bias in the degree of philopatry to
natal sites or social groups (Greenwood 1980). A bias
towards female philopatry is most common among
social mammals (Eisenberg 1997), and is typical of small-
bodied canids (e.g. red foxes, V. vulpes, von Schantz
1981; bat-eared foxes, Otocyon megalotis, Nel, Mills &
Van Aarde 1984; crab-eating foxes, Cerdocyon thous,
Macdonald & Courtenay 1996). There was a slight bias
towards male dispersal within the swift fox population
with more males dispersing than females (Karki 2003).

The tolerance shown to neighbouring related foxes
indicates that swift foxes can identify related individuals
and maintain long-term relationships with them. Continu-
ing social relationships between adults and dispersed
offspring have also been documented in crab-eating
foxes (Macdonald & Courtenay 1996), and is likely in
kit foxes (Ralls et al. 2001). The ability to recognize relatives
and adjust one’s behaviour accordingly has important
implications for the evolution of mammalian social systems.

In conclusion, our data suggests that a kin-clustered
structure occurs in swift fox society. We found that
tolerance of conspecifics was correlated positively with
their degree of kinship. Thus, the indirect or kin-selected

benefits accrued from living in kin clusters may be of
fundamental importance to the evolution of swift fox
breeding systems and space use patterns.
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